

VIETNAM NATIONAL UNIVERSITY – HO CHI MINH CITY UNIVERSITY OF INFORMATION TECHNOLOGY

SYLLABUS <NT219 – Cryptography>

1. GENERAL INFORMATION

Course name (Vietnamese):	Mật mã học
Course name (English):	Cryptography
Code:	NT219
Type of course:	Compulsory
Deparment:	Faculty of Computer Network and Communications
Instructor:	Nguyen Ngoc Tu
	Email:tunn@uit.edu.vn
Number of credits:	3 credits
Theory:	2 credits (30 credit hours)
Lab:	1 credits (20 credit hours)
Self-study:	2 credits (30 credit hours)
Prerequisite course(s):	
Pre-course(s):	

2. COURSE DESCRIPTION

This course provides students with the fundamental theory of cryptography and its applications. The foundation knowledge, including classical cryptographic algorithms, symmetric-key cryptography, and the current standard of symmetric cipher algorithms, is fully presented. The modern public-key cryptography based on the factorization problem (RSA, RSADSS), and discrete logarithm problem(DH, ECDH, DSA, ECDSA, ElGamal cipher, ECIES), are also considered in detail. The application is discussed in the computer network context, including authentication; key agreement; and specific secure protocols such as TLS, SSH, IPSec, and Kerberos. Other application topics as consensus-based security, blockchain, and some candidate for post-quantum public-key cryptography are also introduced.

3. COURSE GOALS

Goal No.	Goal description	Program learning outcomes (LOs)	Contribute level
G1	Comparing between all cryptographic algorithms and applying cryptographic knowledge using in secure network protocols	LO2 (2.7.2)	Knowledge - 3
G2	Collecting related documents, proposing solutions to real-world problems to ensure integrity, confidentiality, and availability	LO3 (3.1, 3.3)	Skill - 3
G3	Forming attack hypotheses to multi-application scenarios and proposing the corresponding solution. Demonstrating the testes and verifying the soundness of the solutions	LO4 (4.1)	Skill - 3

4. COURSE LEARNING OUTCOMES

Table 2.

Course outcomes	Descriptions	Level of teaching
G1.1	Understand and compare between all cryptographic algorithms	T,U
G1.2	Apply cryptographic knowledge using in secure network protocols	T,U
G2.1	Collecting related documents from several sources to survey a specific topic.	I,U
G2.2 Proposing solutions to real-world problems to ensure integrity, confidentiality, and availability.		T,U
G3.1 Forming attack hypotheses to multi-application scenarios, including networks, data and data centers, operating systems, and hardware.		I,T,U
G3.2 Proposing solutions to attack hypothesis including security models and required input resources.		T,U
G3.3	Demonstrating the testes and verifying the soundness of the solutions	I,U

5. COURSE CONTENT, LESSON PLAN

a. Theory

Table 3.

Week (3 class hours per	Contents	Course learning outcomes	Activities	Assessm ent element
week)	 Introduction to the course Course syllabus and policy; Reading guides for textbooks and references; Guides for required tools and libraries; Guides for searching and managing documents. 	G1.1, G2.1	Teaching: lecturer gives instructions, demo, question; Study in class: exchange related issues, problems. Work at home:	A1,A4
2	 Introduction to cryptography Introduction to cryptography: motivations and overview; Common terminologies; Classical cryptography algorithms. 	G1.1, G2.1, G2.2, G3.1, G3.2	Teaching: lecturer gives instructions, demo, question; Study in class: exchange related issues, problems. Work at home: assignment, project	A1,A4
3	 Symmetric cryptography Overview; Stream ciphers Block ciphers:DES and triple DES; 	G1.1, G1.2, G2.1, G2.2, G3.1, G3.2	Teaching: lecturer gives instructions, demo, question; Study in class: exchange related issues, problems. Work at home: assignment, project	A1,A4
4	 Symmetric cryptography(cont.) Block ciphers AES; Modes of operations in block cipher 	G1.1, G1.2, G2.1, G2.2, G3.1, G3.2	Teaching: lecturer gives instructions, demo, question; Study in class: exchange related	A1,A4

			issues, problems.	
			Work at home:	
			assignment, project	
5	Mid-term project	G1.1, G1.2, G2.1,	Teaching: gives	A1,A4
	presentation:	G2.2, G3.1, G3.2,	questions and	
	Group presentation (10 minutes	63.3	instructions	
	each):		insu uctions,	
	• Project topics		Study in class:	
	• Scenario		present their	
	• Related entities and security		project.	
	requirements		Work at home: do	
	• References		project research	
	• Literature survey sketch			
	• Goals of the projects			
	Demonstration proposal			
0	Asymmetric cryptography:	$G_{1.1}, G_{1.2}, G_{2.1}, G_{2.2}, G_{3.1}, G_{3.2}$	Teaching: lecturer	A1,A4
	factoring problem	02.2, 03.1, 03.2	gives instructions,	
	 Motivations and Overview: 		demo, question;	
	 RSA cipher, RSA-based 		Study in class:	
	signature		exchange related	
			issues, problems.	
			Work at home:	
			assignment, project	
7	Asymmetric cryptography:	G1.1, G1.2, G2.1,	Teaching: lecturer	A1,A4
	Cryptosystems based on the	G2.2, G3.1, G3.2	gives instructions.	
	discrete logarithm problem		demo question:	
	• Motivations;		demo, question,	
	Diffie-Hellman key exchange		Study in class:	
	 Elgamal cipher; 		exchange related	
	• DSA signature,		issues, problems.	
			Work at home:	
			assignment, project	
8	Asymmetric cryptography:	G1.1, G1.2, G2.1, G2.2, G3.1, G3.2	Teaching: lecturer	A1,A4
	Motivations:	02.2, 05.1, 05.2	gives instructions,	
	 ECC Diffie–Hellman key 		demo, question;	
	exchange		Study in class:	
	• ECC ciphers		exchange related	
	• ECDSA		issues problems	
			issues, problems.	
			work at nome: assignment, project	

9	Hash function and data	G1.1, G1.2, G2.1,	Teaching, lecturer	A1,A4
	authentication (P1)	G2.2, G3.1, G3.2	gives instructions	
	Motivations		domo question	
	• Hash functions:		demo, question;	
	• Secure Hash Algorithms		Study in class:	
	SHA2;		exchange related	
			issues, problems.	
			Work at home:	
10	Hash function and data	G11 G12 G21	assignment, project	
10	authentication (P2)	G1.1, G1.2, G2.1, G2.2, G3.1, G3.2	Teaching: lecturer	A1,A4
	Motivations		gives instructions,	
	• Secure Hash Algorithms		demo, question;	
	SHA3;		Study in class:	
	• Data integrity verifying:		exchange related	
	MAC • HMAC		issues, problems.	
			Work at home:	
11			assignment, project	. 1 . 4 .
	Digital Signature Motivations	GI.1, GI.2, G2.1, G2.2, G3.1, G3.2	Teaching: lecturer	A1,A4
	 Elgamal digital signature 	02.2, 05.1, 05.2	gives instructions,	
	scheme		demo, question;	
	• Schnorr digital signature		Study in class:	
	 NIST digital signature 		exchange related	
	schemes		issues problems	
	-RSASSA-PKCS		Work at home:	
	-RSASSA-PSS		assignment, project	
	-DSA, ECDSA • Public key distribution		······, [-··j···	
	(X.509 digital certificates)			
12	Applied cryptography:	G1.1, G1.2, G2.1,	Teaching: lecturer	A1,A4
	Network security	G2.2, G3.1, G3.2	gives instructions	
	• Authentication;		demo question:	
	 Sesion key agreement; Deployment accure 		denio, question,	
	• Deployment secure		Study in class:	
	• SSH, TLS, IPSec		exchange related	
			issues, problems.	
			Work at home:	
13	Applied cryptography:	G11 G12 G21	assignment, project	
	Consensus mechanism and	G2.2, G3.1. G3.2	Teaching: lecturer	A1,A4
	blockchain-base security	, , ,	gives instructions,	
	Motivations		demo, question;	

-				
	• Consensus-based security		Study in class:	
	(majority-rule security)		exchange related	
	• Integrity verification: Hash-		·	
	based and signature-based		issues, problems.	
	• Blockchain: a case study		Work at home:	
	Transaction protocol (smart		assignment, project	
	contract)			
	• Implementation and			
14	application sectors			
14	Applied cryptography:	GI.1, GI.2, G2.1,	Teaching: lecturer	AI,A4
	Candidates for post-quantum	G2.2, G3.1, G3.2	gives instructions	
	cryptography			
	Motivations		demo, question;	
	Candidates for post-		Study in class:	
	quantum public-key		avahanga ralatad	
	cryptography		exchange related	
	Computational hardness		issues, problems.	
	assumptions on lattice;		Work at home:	
	• Lattice-based cryptography;		assignment, project	
	NTRU-based cryptography			
15	Final project presentation	G1.1, G1.2, G2.1,	Teaching: gives	A1,A4
	• Scenario and security	G2.2, G3.1, G3.2	quastions and	
	requirements;	G3.3	questions and	
	• Literature survey;		assessment	
	• Research project results;		Study in class:	
	• Demonstration results;		present their	
			nroject	
			project.	

b. Labs

Table 4.

Week (5 class hours per week)	Contents	Course learning outcomes	Activities	Assessment element
1	 Implement block ciphers (P1) cryptopp library: compile and integrate to C++ projects Coding DES, AES using cryptopp library; Compile demo codes on both Window and Linux OSs; 	G2.1, G2.2, G3.1, G3.2 G3.3	Teaching: Instructors explain the objective, scenario and the content of the lab. Learning: Students do the lab, verify the results and write	A3,A4

2	Implement block ciphers (P2)	G2.1, G2.2,	Teaching:	A3,A4
	• Implement DES, AES with	G3.1, G3.2	Instructors explain	
	different mode of	G3.3	the objective,	
	operations;		scenario and the	
	Compile demo codes on		content of the lab.	
	both Window and Linux		Learning:	
	OSs;		Students do the	
	• Execute the codes and		lab, verify the	
	performances:		results and write	
	 Coding DES_AES without 		the lab report	
	using external cryptographic		the hub report.	
	library;			
3	Implement asymmetric	G2.1, G2.2,	Teaching:	A3,A4
	ciphers	G3.1, G3.2	Instructors explain	
	• Perform computation on	G3.3	the objective,	
	large numbers using		scenario and the	
	cryptopp library;		content of the lab.	
	• Implement RSA, Elgamar		Learning:	
	ECC ciphers using cryptopp		Students do the	
	library;		lab, verify the	
	• Execute the codes and		results and write	
	performances:		the lab report.	
4	Implement DHE and	G2.1. G2.2	Teaching:	A3.A4
-	signatute	G3.1. G3.2	Instructors explain	- 7
	• Implement DHE_ECDHE	G3.3	the objective.	
	using cryptopp library;		scenario and the	
	• Demontrate man-in-the-		content of the lab.	
	midle attacks		Learning:	
	• Implement RSASSA,		Students do the	
	ECDSA,		lab verify the	
	• Execute the codes and		results and write	
	analyze the computational		the lab report	
5	performances;	G_{21} G_{22}	Tooching:	Δ3 Δ/
5	HMAC	$G_{2.1}, G_{2.2}, G_{2.1}$	Instructors explain	A3,A4
		03.1, 03.2	the objective	
	 Implement SHA2, SHA3; Implement digital contificate 	03.5	the objective,	
	• Implement digital certificate $(X509)$.		scenario and the	
	• Execute the codes and		content of the lab.	
	analyze the computational		Learning:	
	performances;		Students do the	
			lab, verify the	
			results and write	
			the lab report.	
6	Cryptanalysis Hash funtions	G2.1, G2.2,	Teaching:	A3,A4
	• Compute MD5, SHA1	G3.1, G3.2	Instructors explain	
	collision using hashclash;			

•	 Do length extension attacks SHA1, SHA2 using HashPump Implement codes to perform length extension attacks on SHA2; 	G3.3	the objective, scenario and the content of the lab. Learning: Students do the lab, verify the	
			the lab report.	

6. COURSE ASSESSMENT

Table 5.

Assessment element	Course learning outcomes	Percentage (%)
A1. Project	G1.1, G1.2, G2.1, G2.2, G3.1, G3.2, G3.3	30%
A2. Mid-term exam		0
A3. Labs	G2.1, G2.2, G3.1, G3.2 G3.3	20%
A4. Final exam	G1.1, G1.2, G2.1, G2.2, G3.1, G3.2,	50%

a. Project assessment rubric (A1)

- Each group (at most 3 students) has to select a topic for their project based on course description, course syllabus, and keywords introduced in the first week;
- Each group has to select (at least 1) new articles that proposed solution for topics;
- Each group has to study the articles, survey the related knowledge and propose demo applications;

	Distinction	Merit	Pass	Fail
The first	- Topic is	- Topic is	- Topic is related	-Topic is not
presentation	related to the	related to the	to the course	really related
(33%)	course	course	- References are	to the course;
	- Good	- Good	related to the	- References
	References	References	topic	does not relate
	-Excellent	- Good	- Presentation is	to the topic;
	presentation	presentation	acceptable:	- Poor
	skills:	skills:	Understand the	presentation
	Context, related	Context,	context and	skills
	entities, security	related	related entities,	- Poor demo
	requirement,	entities,	list some security	application
	proposed	security	requirements but	
	project solution	requirement,	does not	
	-Well proposed	proposed	completeness, do	

	demo	project	some literature	
	application	-Good	project solution	
		proposed	Promote dome	
		demo	idea for demo	
		application	but not fully	
			understand the	
The Final	Good undeted	Good	references does	Poorly
presentation	references:	updated	not update:	understanding
(33%)	- Excellent	references;	- Presentation is	the topics;
	presentation:	- Good	acceptable:	-Poor
	Context, related	presentation:	Understand the	Presentation
	entities, security	Context,	context, related	- Cannot
	requirement,	related	entities and	deploy any
	well literature	entities, and	security	demo
	solution	requirement:	some literature	applications
	- Good demo	good	surveys buts not	
	application	literature	fully understand,	
	11	surveys,	project solution	
		project	- Do some demo	
		solution	application but	
		- Good demo	does not apply	
		application	the topic	
		but not fully	knowledge	
		topic		
Final	-Fully	-Mostly	-Somewhat	-Does not
report(33%)	understand the	understand	understand the	understand the
	related	the related	related	related
	knowledge	knowledge	knowledge	knowledge
	- Clear and	- Clearly in	- Clearly in	- Poorly in
	coherent	writing;	writing;	writing;
	- Fully present	- well present	- present the	-POOFLY presented
	the demo	application	but does not	demo
	application	- Code can	thoroughly:	application:
	- Code can run	compile and	- Do some	- Do some
	well	run	coding but does	coding but
			not compile and	does not
			run;	compile and
				run;

b. Lab assessment rubric (A3)

Students have to complete the 6 labs and do the experiment on both Window and Linux operating systems.

	Distinction	Merit	Pass	Fail
Labs 1,2,	- Complete the tasks	- Mostly complete	- Compete for at	-Compete
3,4,5,6	- The code can	the tasks	least half of the	at less than
	compile and run well;	- The code can	tasks	half of the
	- Full comments for	compile and run	- The code can	tasks
	code lines	well;	compile and	- Does not
	- Do experiments fully	-Make some	run;	do

on both Windows and Linux; -Fully present the running performances	comments for code lines but does not fully; - Do experiments on Windows or Linux; - Present some running performance	- Do experiments on Windows or Linux but does not fully;	experiments on both OSs
---	--	--	-------------------------------

c. Final assessment rubric (A4)

	Contents	Distinction	Merit	Pass	Fail
Fundamental	- Ciphers:	- Fully	- Mostly	- Mostly	- Does not
knowledge	Symmetric	understand the	understand	understand the	understand
questions	(DES, AES),	knowledge	the	knowledge;	the
(40%)	asymmetric	- Analyse the	knowledge	- Present	knowledge;
	(RSA, Elgamar,	algorithms	- Can do	primarily	- Does not
	ECC)	and do some	some analyse	security	fully
	- Hash and	comparison;	the	property of	remember the
	HMAC	- Analyse the	algorithms;	the algorithms	security
	- Digital	security of the	- Can Make	-	property of
	Signatures	algorithms	some		the
	(discrete	0	comments on		algorithms
	logarithm-based,		the security of		C
	ECC-based,		the		
	lattice-based)		algorithms		
	-Digital		0		
	certificate				
Cryptoanalysis	Cryptoanalysis	- Analyse the	- Analyse the	- Describe	- Does not
questions	- Public key	algorithms	algorithms	security of	understand
(30%)	cryptosystem:	and do	and do partly	the algorithms	the
	RSA, DHE	comparison;	comparison;	buts does not	security
	- Hash functions	- Analyse the	- Analyse the	do	property of
	-Analize the	security of the	security of the	comparison;	the
	robustness of	algorithms;	algorithms;	- Can do some	algorithms;
	knowing	- Completely	- Can propose	cryptoanalysis	- Does not
	cryptographic	demonstrating	some	and give	give correctly
	algorithms	attack	demonstrating	correctly	demonstrating
		examples;	attack	attack	attack
			examples;	examples	examples;
Applying	- Authentication	- Propose	- Propose	- Propose	Do not detail
questions	- Network	some demo	some demo	some demo	application
(30%)	communication	applications	applications	applications	given
	- Storage on	-Fully analyse	-Understand	- Detail some	contexts
	distributed	the security	the security	security	
	systems	and	properties;	properties but	
		efficiency;		doest not fully	
		- Comment		understand;	
		the			
		applications			
		on some			
		contexts;			

7. COURSE REQUIREMENTS AND EXPECTATIONS

- **Laboratory**: they can be done in the forms of assignments, or those in laboratories, depending on lecturers. Students must fulfill all lecturer's requirements. Late submission is not accepted;
- **Projects:** lecturers hand out team-work projects for the students;
- **Class attendance:** Students are checked their attendance in class. Failing to show up by the time of checking is considered to be absent;
- **Midterm and Final examination:** Students that fail to show up on the examination day without acceptable reasons will get 0.

8. COURSE MATERIALS

Textbooks

[1] Stallings, W. (2019). *Cryptography and network security : principles and practice (8th):* Pearson Education.

[2] Yan, S. Y.(2019). *Cybercryptography: Applicable Cryptography for Cyberspace Security:* Springer.

* Labs

[3] Mihailescu, M. I., & Nita, S. L. (2021). *Pro cryptography and cryptanalysis with C++20: creating and programming advanced algorithms:* Apress.

References

[4] Katz, J., & Lindell, Y. (2020). Introduction to modern cryptography (3rd): CRC press.

9. SOFTWARE, TOOLS

- [1]. CrypTool 2: https://www.cryptool.org/en/ct2/
- [2]. Cryptopp Library version 8.6: https://www.cryptopp.com/
- [3]. C++ code editing, *Visual Studio Code*, https://code.visualstudio.com/
- [4]. C++ library, MSYS2 with mingw64 packages, https://www.msys2.org/;
- [5]. Operating systems, *Windows 7, 10; Ubuntu 20 or Kali Linux* https://www.kali.org/; https://releases.ubuntu.com/20.04/
- [6]. Openssl library version 3.03, https://github.com/openssl/openssl

Date: June 01, 2022

Department Head

Instructor

Nguyen Ngoc Tu