VIETNAM NATIONAL UNIVERSITY – HO CHI MINH CITY UNIVERSITY OF INFORMATION TECHNOLOGY

SYLLABUS NT209 - COMPUTER SYSTEM PROGRAMMING

1. GENERAL INFORMATION

Course name (Vietnamese):	Lập trình hệ thống
Course name (English):	Computer System programming
Code:	NT209
Type of course:	Fundamental
Department:	Faculty of Computer Networks and Communications
Instructor:	PhD. Pham Van Hau, MSc. Do Thi Huong Lan, MSc. Do Thi Thu Hien
	Email: hiendtt@uit.edu.vn
Number of credits:	3
Theory:	2
Lab:	1
Self-study:	
Prerequisite course(s):	
Pre-course(s):	IT001 - Introduction to programming IT006 - Computer architecture

2. COURSE DESCRIPTION

This course aims to provide students with fundamental skills and knowledge of:

- Basic concepts of computer-level programming in assembly language: data type, registers, memory, instructions... to understand how a program in a high-level programming language can be presented at the computer level and vice versa.
- Basic knowledge and skills in program optimization, concepts of stack, pointer, cache, and other computer system elements... to offer students the ability to build programs with better performance.
- Basic knowledge and skills in reverse engineering, buffer overflow attack, and program debugging.

3. COURSE GOALS

Table 1.

Goal No.	Goal description	Program outcomes	Level (Bloom)
Gl	Describe the functions of components and data presentation in a computer system	L02 (2.1, 2.2)	Knowledge - 3
<i>G2</i>	Describe the functions of assembly instruction in the operation of programs	L02 (2.1, 2.2, 2.4)	Knowledge - 3
G3	Translate high-level language based programs to assembly-based presentation and vice versa, intepret assembly code to understand or exploit the operation of programs.	L02 (2.7.2), L03 (3.1, 3.2)	Skill - 3

4. COURSE LEARNING OUTCOMES

Table 2.

Course outcomes	Descriptions	Level of teaching
G1.1	Describe the functions of components in a computer system	Ι
G1.2	Describe data presentation in a computer system	Ι, Τ
G2.1	Describe the functions of assembly instruction in the operation of programs	Ι, Τ
G3.1	Translate high-level language based programs to assembly- based presentation and vice versa	I, T, U
<i>G3.2</i>	Intepret assembly-based program to discover or exploit the operation of program	I, T, U

(I-Introduce, T-Teach, U-Utilize)

5. COURSE CONTENT, LESSON PLAN (Nội dung môn học, kế hoạch giảng dạy)

a. Theory

Table 3.

Week (1.5 hours)	Contents	Course learning outcomes	Activities	Assessment element
1 (1.5 class hours)	 Chapter 1: Introduction to Computer system programming Overview of real-world facts that needs the knowledge of computer system programming. Overview of course goals, contents Assessment 	G1.1	Teaching:lecturergivesinstructions,questionStudyinclass:exchangerelatedissues, problems.Self-study:dohomework	A1, A2
2 (1.5 class hours)	 Chapter 2: Data presentation and manipulation Data storing The base of binary, octal, hexan, decimal Words, data size Bitwise operations, shifts Integer presentation Byte ordering: little/big endian Signed and unsigned integer Expand and contract numbers Arithmetic operations Unsigned addition Multiplication, Division Floating point IEEE Floating point 754 Floating point arithmetic operations 	G1.2	Teaching: lecturer gives instructions, question, demo Study in class: exchange related issues, problems. Self-study: do homework	A1, A2
3, 4 (3 class hours)	 Chapter 3.1: Basic to computer- level programming – Assembly Introduction to IA32 and x86_64 Fundamental concepts in computer system programming: registers, memory, Assembly-based operations: Instructions Operand types: registers, memory, immediates Data moving, memory addressing 	G1.1, G1.2, G2.1, G3.1	Teaching:lecturergivesinstructions,question,demo,practiceexerciseswithdetailedinstructionsorquizzesstudyStudyinclass:exchangeexchangerelatedissues, problems, doin-classexercises/quizzes	A1, A2

	 Two operand and one operand arithmetic instructions Exercises in basic computer system programming: understanding assembly instructions, operands 		Self-study: do homework	
5, 6 (3 class hours)	 Chapter 3.2: Machine-level control Condition codes Application of condition code in controlling program flows: Conditional branches, jump Loops Switch Exercises in machine-level control: understand assembly presentation of if/else, loops, switch statements 	G1.1, G2.1, G3.1	Teaching:lecturergivesinstructions,question,demo,practiceexerciseswithdetailedinstructionsorquizzessuesStudyinclass:exchangeexchangerelatedissues, problems, doin-classexercisesSelf-study:dohomeworkdo	A1, A2
7 (1.5 class hours)	 Chapter 3.3: Procedure Fundamental concepts in procedure calling in IA32: stack, return address, Procedure operations: Control flow from caller to callee and vice versa Data passing: arguments, return values Recursive procedure example Mid-term examination preparation 	G1.1, G2.1, G3.1	Teaching:lecturergivesinstructions,question,demo,practiceexerciseswithdetailedinstructionsorquizzesorStudyinclass:exchangerelatedissues, problems, doin-classexercisessexercisesSelf-study:dohomework, preparefor mid-term exam	A2, A3
8 (1.5 class hours)	 Chapter 3.3: Procedure (cont) Procedure calling in x86_64 compared to IA32. Exercises in procedure calling. Introduction to reverse engineering. 	G1.1, G2.1, G3.1, G3.2	Teaching:lecturergivesinstructions,question,demo,practiceexerciseswithdetailedinstructionsorquizzesStudyStudyinexchangerelated	A2, A3

9 (1.5 class hours)	 Chapter 3.4: Advanced data presentation Array: one-dimensional, nested, multi-level arrays Structure: allocation, access and alignment in struct Union Excercises 	G1.1, G2.1, G3.1	issues, problems, do in-class exercises Self-study: do homework Teaching: lecturer gives instructions, question, demo, practice exercises with detailed instructions or quizzes Study in class: exchange related issues, problems, do in-class exercises Self-study: do homework	A2, A3
10, 11 (3 class hours)	 Chapter 3.5: Introduction to buffer overflow Fundametal knowledge of buffer overflow: Vulnerability Protection Exercise of exploiting buffer overflow vulnerability in executable files. 	G2.1, G3.1, G3.3, G3.2	Teaching:lecturergivesinstructions,question,demo,in-classbufferoverflowexploitingexerciseStudyinclass:exercisessues,problems,in-classexercisesSelf-study:dohomeworkdo	A2, A3
12 (1.5 class hours)	 Chapter 4: Linking Static linking Object file and ELF format Symbol and Symbol table Linker operations: Symbol resolution Relocation Dynamic Linking with Shared Object files 	G1.1, G2.1	Teaching:lecturergivesinstructions,question, demoStudyinclass:exchangerelatedissues, problemsSelf-study:dohomework	A3
13 (1.5 class hours)	 Chapter 5: Memory hierarchy and Cache Memory hierarchy Cache memory 	<i>G1.1, G2.1</i>	Teaching : lecturer gives instructions, question, demo	A3

			Studyinclass:exchangerelatedissues, problemsSelf-study:dohomework
14&15 (1.5 class hours)	Course review and final exam preparation	<i>G1-G3</i>	Teaching:lecturerA3givesinstructions,coursereview,quizzesStudyinclass:exchangerelatedissues, problems, doin-class quizzesSelf-study:preparefinal examination

b. Lab

Table 4.

Session (4.5 hours)	Contents	Course learning outcomes	Activities	Assessment element
1	Lab 1: Data Lab	G1.2	 Teaching: lecturer describes the objective of the lab and gives instructions for students. Study in class: Students follow the instruction of the lab, report in-class requirements Self-study: Students read the instruction and prepare the lab at home. 	A2
2	Lab 2: Basic assembly programming	G2.1	 Teaching: lecturer describes the objective of the lab and gives instructions for students. Study in class: Students follow the instruction of the lab, report in-class requirements. Self-study: Students read the instruction and prepare the lab at home. 	A2
3	Lab 3: Basic reverse engineering	G2.1, G3.1	Teaching : lecturer describes the objective of the lab and gives instructions for students. Study in class : Students follow the instruction of the lab, report in-class requirements.	A2

			Self-study : Students read the instruction and prepare the lab at home.	
4	Lab 4: Bomb Lab (advanced reverse engineering)	G2.1, G3.1	 Teaching: lecturer describes the objective of the lab and gives instructions for students. Study in class: Students follow the instruction of the lab, report in-class requirements. Self-study: Students read the instruction and prepare the lab at home. 	A2
5	Lab 5: Bufferbomb Lab (basic buffer overflow)	G2.1, G3.1, G3.2	 Teaching: lecturer describes the objective of the lab and gives instructions for students. Study in class: Students follow the instruction of the lab, report in-class requirements. Self-study: Students read the instruction and prepare the lab at home. 	A2
6	Lab 6: Bufferbomb Lab (advanced buffer overflow)	G2.1, G3.1, G3.2	 Teaching: lecturer describes the objective of the lab and gives instructions for students. Study in class: Students follow the instruction of the lab, report in-class requirements. Self-study: Students read the instruction and prepare the lab at home. 	A2

6. COURSE ASSESSMENT

Table 5.

Assessment element	Course learning outcomes	Percentage (%)
A1. Mid-term exam	G1.1, G1.2, G2.1, G3.1	30%
A2. Lab	G1.1, G1.2, G2.1, G3.1, G3.2	20%
A3. Final exam	G1.1, G1.2, G2.1, G3.1, G3.2	50%

a. Assessment A1

The mid-term exam includes (but is not limited to)

- Multiple choice questions: 10 12 questions for G1.1, G2.1
- Written: 2-3 questions for G2.1, G3.1.

b. Assessment A2

The practice test score is the average of 6 practice sessions, each practice has a marking guide.

c. Assessment A3

The final exam includes (but is not limited to)

- Multiple choice questions: 10 12 questions for G1.1, G1.2, G2.1
- Written: 2-3 questions for G2.1, G3.1, G3.2.

7. COURSE REQUIREMENTS AND EXPECTATIONS

- Laboratory: labs can be done in group in laboratories. Lecturer describes the objective of the lab and gives instructions for students. Students must fulfill all lecturer's requirements. Late submission is not accepted or punished according to the reason.

- Class attendance: Students are checked their attendance in class by in-class assignment. Failing to show up by the time of checking is considered to be absent.

- Students need to read slide before the class.

- Mid-term and Final examination: Students that fail to show up on the examination day without acceptable reasons will get 0.

8. COURSE MATERIALS

1. Bryant, R. E. & O'Hallaron, D. R. (2015). *A Programmer's Perspective (3rd edition)*. Addison-Wesley Publishing Company.

2. Eagle, C. (2008). *The IDA Pro Book: The Unofficial Guide to the World's Most Popular Disassembler*. No Starch Press.

3. Eilam, E. (2011). *Reversing: Secrets of Reverse Engineering*. Wiley.

9. SOFTWARE, TOOLS

- 1. C compiler: GCC/Online compiler (Godbolt)
- 2. Linux virtual machine.
- 3. Programming IDE for C/C++.
- 4. Disassembler: IDA Pro, GDB.

Date: Month, Date, Year Instructor

Faculty Head