BIG DATA – MSIS405

Syllabus

1. GENERAL INFORMATION:	
Instructor name:	Email:
Credit: 3 (3 lecture).	
Prerequisites:	

2. COURSE INFORMATION:

• Course description:

Storage, retrieval, analysis, and knowledge discovery using Big Data has made significant inroads in several domains in industry, research, and academia and look at the dominant software systems and algorithms for coping with Big Data. Topics covered include large-scale non-traditional data storage frameworks including graph, key-value, and column-family storage systems; data stream analysis algorithms; large scale anomaly detection; information diffusion; and recommendation algorithms. The course will involve hands-on proramming assignments and a term-project using real-world datasets.

3. BOOK AND MATERIALS:

• Required textbook:

Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data by Paul C. Zikopoulos, Chris Eaton, McGraw Hill Publisher, 2011.

- Other materials:
- 1. Social Network Analysis (4th Ed.) by John Scott, SAGE Publications Ltd, 2017
- 2. Mining of massive datasets, Anand Rajaraman, Jure Leskovec, and Jeffrey Ullman, online version and research articles related.

4. GRADING PROCEDURES:

Assignments, Class attendance/participation:	50%
Final Project:	50%

5. COURSE OUTLINE:

Topics:

- Polyglot persistence
- Key-value storage systemsColumn-family storage systems
- Graph storage systems
- Algorithms for detecting similar items
 Recommandation systems
 Data stream analysis algorithms

- Link Analysis algorithms
- Clustering algorithms
- Detecting frequent items

***	m ·
Week	Topic
1	Part 1. Introduction to Big Data
	Week 1: Topics
	Introduction to Big Data
	Revisit useful technologies and concepts
	Readings:
	J. Ginsberg, et al., "Detecting influenza epidemics using search engine
	query data" Nature 457 pp. 1012 ~ 1014, February 2009
	Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung, "The Google file
	system" Proceedings of SOSP 2003: 29-43
2	Week 2: Topics
	Distributed File System: Continued
	Readings:
	Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung, "The Google file
	system" Proceedings of SOSP 2003: 29-43
3	Part 2. Data Storage Models
	Week 3: Topics
	NoSQL stands for "Not Only SQL". Why NoSQL?
	Data Consistency
	Distributed Hashtable
	Key-Value storage systems (Amazon's Dynamo)
	Readings:
	Giuseppe DeCandia, et al., "Dynamo: Amazon's Highly Available Key-
	value Store," Proceedings of twenty-first ACM SIGOPS symposium on
	Operating systems principles, pp. 205-220
4	Week 4: Topics
	Key-Value storage systems-continued (Amazon's Dynamo)
	Readings:
	Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
	Balakrishnan,"Chord: A Scalable Peer-to-peer Lookup Service for
	Internet Applications" Proc. 2001 SIGCOMM, Mar. 2001, pp.149-160
5	Week 5: Topics
	Column-Family storage models (Google's BigTable)
	Readings:

	For Chang Laffrey Doon Sonior Chamorrot Wilson C Heigh Debouch
	Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah
	A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert
	E. Gruber, "Bigtable: A Distributed Storage System for Structured Data"
	OSDI'06: Seventh Symposium on Operating System Design and
	Implementation, Seattle, WA, November, 2006
6	Week 6: Topics
	Document storage systems (Facebook's Cassandra)
	Midterm 1
7	Week 7: Topics
	Document storage systems (Facebook's Cassandra)
	Readings:
	Avinash Lakshman, Prashant Malik, "Cassandra: A Decentralized
	Structured Storage System" ACM SIGOPS Operation Systems Review,
	Vol. 44-(2), April 2010 pp. 35-40
	Related links:
	Titan: http://thinkaurelius.github.io/titan/
	Gremin: https://github.com/tinkerpop/gremlin/wiki
	Faunus: http://thinkaurelius.github.io/faunus/
0	Week 8: Topics
8	Graph storage models
	Related links:
	Titan: http://thinkaurelius.github.io/titan/
	Gremin: https://github.com/tinkerpop/gremlin/wiki
	Faunus: http://thinkaurelius.github.io/faunus/
	Grzegorz Malewicz et. el. "Pregel: a system for large-scale graph
	processing" Proceeding
	SIGMOD '10 Proceedings of the 2010 ACM SIGMOD International
	Conference on Management of data Pages 135-146
9	Part 3. Scalable algorithms and Big Data Analytics
	Week 9: Topics
	Recommendation systems with case studies of Amazon's Item-to-Item
	recommendation and Netfix Prize
	Readings:
	Anand Rajaraman, Jure Leskovec, and Jeffrey Ullman, "Mining of
	Massive Datasets", Cambridge University Press, 2012 Chapter 9
	Greg Linden, Brent Smith, and Jeremy York, "Amazon.com
	Recommendations, Item-to-Item Collaborative Filtering" IEEE Internet
	Computing, 2003
	Yehuda Keren, "Matrix Factorization Techniques For Recommender
	System", IEEE Computer 2009
10	Week 10: Topics
10	Link Analysis with case studies of the PageRank algorithm and the Spam
	farm analysis
	Readings:
	Anand Rajaraman, Jure Leskovec, and Jeffrey Ullman, "Mining of
	Massive Datasets", Cambridge University Press, 2012 Chapter 3 and

	Chapter 5
11	Week 11: Topics
	Mining Data Streams
	Readings:
	Anand Rajaraman, Jure Leskovec, and Jeffrey Ullman, "Mining of
	Massive Datasets", Cambridge University Press, 2012 Chapter 4
12	Week 12: Topics
	Mining Data Streams : Continued
	Readings:
	Anand Rajaraman, Jure Leskovec, and Jeffrey Ullman, "Mining of
	Massive Datasets", Cambridge University Press, 2012 Chapter 4
	Hadoop mini tutorial.
13	Week 13: Topics
	Advertising on the Web
	Readings:
	Anand Rajaraman, Jure Leskovec, and Jeffrey Ullman, "Mining of
	Massive Datasets", Cambridge University Press, 2012 Chapter 8
14	Week 14: Topics
	Advertising on the Web
	Readings:
	Anand Rajaraman, Jure Leskovec, and Jeffrey Ullman, "Mining of
	Massive Datasets", Cambridge University Press, 2012 Chapter 8
15	Week 15: Project Presentations

6. COURSE REQUIREMENTS:

There will be several individual or team presentations. (Each presentation as well as how a group functioned as a team will be graded subjectively by the instructor)

Each individual assignment is to be done independently. Students are encouraged to join in the class discussion and present their thoughts and ideas on the all distributed system problems.

Students are expected to attend all class sessions. Excused absences will be granted only in cases of illness, death, or other extreme family emergency. There is a grade penalty for excessive absences. Any request for an excused absence must be made in person and in writing.

7. ACADEMIC INTEGRITY POLICIES:

- Student may not use Vietnamese languague in class, or will be reduced 2% final marks
- Be punctual to come and leave the class.
- Maximum cancellation time per semester is 6 hours per class.

Instructor's Signature