

COURSE OUTLINE CE224 – EMBEDDED SYSTEM DESIGN

1. GENERAL INFORMATION

Subject Name (Vietnamese):	Thiết Kế Hệ Thống Nhúng		
Subject Name (English):	Embedded System Design		
Course code:	CE224		
Belong to the knowledge	General course \Box ; Basic IT course \Box ;		
block:	Junior CE core course \square ; Senior CE core course \square ; Graduating course \square		
Faculty, Department in	Computer Engineering Faculty		
charge:	Department of Embedded Systems and Robots		
Lecturer:	Tran Ngoc Duc		
	Email: <u>ductn@uit.edu.vn</u>		
Number of credit:	4		
Theory:	3		
Practice:	1		
Self learning:	0		
Prerequisite:			
Previous course:	Microprocessor and Microcontroller		

2. COURSE DESCRIPTION

(State Positions of subjects in the curriculum, purpose and main content of the subject; about 3 to 5 lines)

Introduce concepts, principles of system design from simple to complex. The study consists of 3 main knowledge blocks presented as system modeling, design and analysis. Three blocks this end is mixed into 12 main chapters relative n Dissociations g. The end of the theory part of each knowledge block will be lab exercises to have a more realistic view of the concepts and algorithms introduced.

3. COURSE GOALS

After completing this course, students can:

Table 1.

Symbol	Course objectives [1]	Output standard in
		curriculum [2]

Gl	Having skills in analyzing problems and solving problems	3
<i>G2</i>	Have skills to learn and research to solve scientific problems	4.1
G3	Having skills of system thinking and learning ability to develop in the Computer Engineering industry	5
<i>G4</i>	Having professional ethics	6
<i>G5</i>	Equipped with the ability to read professional documents in foreign languages	9.2

4. COURSE LEARNING OUTCOMES

(Course learning outcome (CLO) corresponds to the course objectives in Section 3. The CLO are coded G1 to Gn. There should be no more than 10 CLO.)

Table 2.

CĐRMH [1]	Mô tả CĐRMH (Mục tiêu cụ thể) [2]	Mức độ giảng dạy[3]
G1 (3.1.1)	Understand and analyze common problems from simple to complex.	ITU
G2 (3.2.1)	Applicable to solving common problems from simple to complex	ITU
G3 (4.1.1)	Applying skills to learn and research to solve scientific problems	ITU
<i>G4 (5.2)</i>	Applying learning to stream life in the Computer Engineering industry	IT
G5 (6.1.1)	Understanding and applying the requirements of professional ethics	ITU
G6 (9.2)	Applying reading comprehension of professional documents in foreign languages	ITU

5. COURSE CONTENT, LESSON PLAN

(List the content of teaching theory and practice, showing the correlation with CLO)

a. Theory

Table 3.

Less	Content [2]	CLO[3]	Teaching and learning activities [4]	Evalu
on				ation

(2.25 hour each) [1]				compo nent [5]
Less on 1	 Chapter 1. Introduction to embedded computing system concept 1.1 Overview Embedded System Computing 1.2 Introduction to the Cyber Physical system concept 1.3 Overview of applying embedded systems for cyber physical systems 	G1, G2, G3, G5	Teachers: Popularize class rules, introduce subject syllabus, provide learning materials for students. Teaching about the introduction of Design of Embedded System Student in class: Listening to lectures by faculty members and questioned to lecturer, discussed issues of Design of Embedded System. Answer the questions at the end of the class. Students study at home: Review the lesson and answer the questions discussed at the end of the week 1 slide in the notebook.	A1, A2
Less on 2	Chapter 2. Design based on model 2.1 The predetermined model 2.2 The relevance of the predetermined model with the design of today's cyber physic systems 2.3 Continuous dynamics model	<i>G1, G2,</i> <i>G3, G6</i>	Students prepare at home: Read the slide of week 2 provided by teachers Lecturer: Review knowledge of chapter 1, reiterate the embedded system knowledge chain. Teaching about embedded system design by building the model. Students in class: Listen to lectures by lecturers, compare them with previous knowledge and ask questions if needed, discuss issues of embedded system models. Answer the last questions of study Students learn at home: Review lesson and answer the discussion questions at the end of the slide of week 2 into the notebook.	A1, A2
Less on 3	Chapter 3. Discrete dynamics model 3.1 Basic concepts 3.2 Sample models 3.3 Languages and frameworks to design models 3.4 Some examples of design models Fig	<i>G1, G2,</i> <i>G3, G6</i>	Students prepare at home: Read the slide of week 3 provided by teachers Lecturer: Review the chapter 2, recall about the embedded system knowledge chain. Lecture about the contents of discrete system model Students in class: Listen to lectures, compare them with previous knowledge and ask questions if needed, discuss issues about Discrete model. Answer questions at the end of the class Students study at home: Check out the lesson and answer the discussed questions at the bottom of the slide week 3 in the notebook.	A1, A2
Less on 4	Chapter 4. Extended state machine model	<i>G1, G2,</i> <i>G3, G6</i>	Students prepare at home: Read the slide of week 4 provided by teachers .	A1, A2

	4.1 Machine model expanded state4.1.1 Model over time4.1.2 mixed model4.2 Examples		Lecturer: Review knowledge of chapter 3, reiterate the embedded system knowledge chain. Lecture on the content of state machine models over time and mixed models. Students in class: Listen to lectures by lecturers, compare them with previous knowledge and ask questions if needed, discuss issues about status machine models and related knowledge. Reply to questions and do the end of the lesson Student study at home: Review lesson and answered the discussed questions and do the exercise at the end of the week 4 slide in the notebook.	
Less on 5	Chapter 5. The synthesis of state machine models 5.1 Sequential state machine model 5.2 Simultaneous state machine model 5.2.1 The synthesis of asynchronous states 5.2.2 The synthesis of synchronization states 5.3 Split state machines in programming 5.4 Examples	<i>G1, G2,</i> <i>G3, G6</i>	Students prepare at home: Read the slide of week 5 provided by the teacher. Refer to the knowledge about models of extended state-of- the-art machine design and mixed models. Lecturer: Review knowledge of state machine model over time and mixed model in the previous lesson, check students' assignments, Recall the embedded system knowledge chain. Teaching on the content required to synthesize the asynchronous state and synchronous state, students do exercises on the division of the state into the C programming. Students in class: Listen to the lecture, compare it with the previous knowledge and ask the questions if needed, discuss issues of asynchronous and synchronous state machines. Answer the questions and do the end of the lesson Students study at home: Review the lesson, answer discussion questions and do homework at the end of the slide week 5 in the notebook.	A1, A2
Less on 6	Chapter 6. Sensors and actuators 6.1 Introduce the principle of several types of sensors: accelerometer, shaft sensor 6.2 Calibration principle of sensor 6.3 Errors occur when working with sensors and the way to deal with 6.4 Example	<i>G1, G2,</i> <i>G3, G6</i>	Students prepare at home: Read the slide of week 6 provided by the teacher. Refer to the knowledge of sensors, actuators and solutions to solve problems when using sensors. Lecturer: Review knowledge of synchronous and asynchronous state machines, examine student assignments, and recall about embedded system knowledge. Teaching on problems using sensors, ways to calibrate and solving errors when using it. Students in class: Listen to lectures by lecturers, compare with previously read	A1, A2

			knowledge and ask teachers questions.	
			discuss sensor issues and related	
			knowledge. Answer the questions and do	
			the end-of-class exercises	
			Students study at home: Review the	
			lesson answer the questions discussed at	
			the end of the week 6 slide in the	
			notebook	
Less	Chanter 7 Memory	GI G2	Students prepare at home: Read the slide	A1 A2
on 7	architecture in	<i>G3. G6</i>	week 7 provided by the teacher Refer to	,
	embedded systems		the knowledge about busy waiting	
	7 1 Types of memory		solutions	
	7.2 Memory man		Lecturer: Review the knowledge of	
	7 3 Organize memory		sensors recall the embedded system	
	stack static french level		knowledge chain Teaching on the	
	heaps		organization of memory in embedded	
	7 4 Memory usage		systems instructing students to do	
	model in C		exercises on using C programming	
	7.5 Memory hierarchy:		language in memory distribution.	
	cached, virtual memory		Students in class: Listen to lecture.	
	7.6 Example		compare with previously knowledge and	
	···· ·································		ask questions if needed, discuss memory	
			organization issues and related knowledge.	
			Answer the questions and do the end-of-	
			class exercises	
			Students study at home: Review the	
			lesson, answer the discussion questions	
			and do the exercises at the end of the week	
			7 slide in the notebook.	
Less	Mid-term semester	<i>G1, G2,</i>	Students prepare at home: Read slide of	A1, A2
on 8	review	G3, G4,	week 8 provided by teachers, review all	
		<i>G5</i>	chapters 1, 2, 3, 4, 5, 6, 7 and lectures	
			slides from week 1 to week 7 and review	
			all the previous exercise.	
			Teachers: Give students a 30-minute test to	
			test students' knowledge. Review the	
			knowledge of chapters 1, 2, 3, 4 and	
			remind the exercises that have done,	
			paying special attention to the exercises	
			and knowledge that students have not	
			mastered in the test. Answer students'	
			questions	
			Students studying in class: Take tests,	
			monitor and listen to lecturers, record	
			review contents and necessary exercises	
			Students studying at home: Review	
			knowledge and exercises.	

Less	Chapter 8.	<i>G1, G2</i> ,	Students prepare at home: Reading slide of	<i>A1, A4</i>
on 9	Input/Output system	G3, G5,	week 9 provided by teachers. Refer to the	,
	on embedded system	<i>G6</i>	knowledge of the principles of input and	
	9.1 In/Out principles		output on embedded systems.	
	(digital or analog, wired		Lecturer: Review knowledge of memory	
	or wireless, serial or		organization, reiterate the embedded	
	parallel)		system knowledge chain. Lecture on	
	9.2 Serial input/output		input/output principles, guide students to	
	9.3 Parallel input/output		do exercises on dispute resolution.	
	9.4 UART Transmission		Students in class: Listen to the lecture,	
	9.5 Handling input with		compare it with the previous knowledge	
	Polling and Interrupt		and ask the teacher questions, discuss	
	9.6 Example		serial and parallel input/output issues,	
	_		handle polling and interrupt and related	
			knowledge. Answer the questions and do	
			the end-of-class exercises	
			Students study at home: Review the	
			lesson, answer the discussion questions	
			and do the exercises at the end of the week	
			9 slide in the notebook.	
Less	Chapter 9.	<i>G1, G2,</i>	Students prepare at home: Read the slide	<i>A1, A4</i>
on	Multitasking	<i>G3, G</i> 6	of week 10 provided by the teacher.	
10	10.1 Simultaneous		Consult more about multitasking	
	programming principle		knowledge.	
	10.2 POSIX application		Lecturer: Review knowledge of	
	in concurrent		input/output systems, reiterate the	
	programming		embedded system knowledge chain.	
	10.3 Program C patterns		Lecture on multitasking issues,	
	apply concurrent		programming applications with POSIX,	
	10.4 Example		to an arrow simultaneously.	
	10.4 Example		to program simultaneously.	
			students in class. Listen to recturers,	
			and ask teachers questions discuss	
			deadlock issues and related knowledge	
			Answer the questions and do the end-of-	
			class exercises	
			Students study at home: Review the	
			lesson, answer the discussion questions	
			and do the exercises at the end of the week	
			10 slide in the notebook.	
Less	Chapter 10. Embedded	<i>G1, G2,</i>	Students prepare at home: Read the slide	<i>A1, A4</i>
on	operating system	<i>G3, G6</i>	of week 11 provided by the teacher. Refer	
11	10.1 Basic concepts and		to the embedded operating system	
	functions of embedded		knowledge.	
	operating systems		Lecturer: Review knowledge of	
	10.2 RMS timing		multitasking and programming related	
	algorithm		issues simultaneously, recalling the	
	10.3 EDF timing		embedded system knowledge chain.	
	algorithm		Lecture on the functional principles of	

			embedded operating systems, guide	
			students to do exercises on RMS and EDF	
			timing algorithms.	
			Students in class: Listen to lecturers	
			compare with previously knowledge and	
			ask togehors questions, discuss operating	
			ask teachers questions, discuss operating	
			Answer the questions and do the and of	
			Answer the questions and do the end-of-	
			Class exercises	
			Students study at nome: Review the	
			lesson, answer the discussion questions	
			and do the exercises at the end of the week	
T			11 slide into the notebook.	41 44
Less	Chapter 10. Embedded	GI, G2,	Students prepare at home: Read the slide	AI, A4
on	operating system	G3, G0	of week 12 set provided by the teacher.	
12	(continued)		Refer to the knowledge about the operating	
	10.4 Compare RMS and		system.	
	EDF		Lecturer: Review knowledge of RMS and	
	10.5 LDF algorithm		EDF in the operating system and some	
	10.6 Example		deadlock solutions, reiterating the	
			embedded system knowledge chain.	
			Lecture on LDF algorithm in the operating	
			system, instructing students to do the	
			operating system exercises.	
			Classroom students: Listen to lectures,	
			compare with previously knowledge and	
			ask teachers questions, discuss LDF issues	
			and related knowledge. Answer the	
			questions and do the end-of-class exercises	
			Students study at home. Review the	
			lesson answer the discussion questions	
			and do the exercises at the end of the week	
			12 slide in the notebook	
Less	Chanter 11 Timing of	G1. G2	Students prepare at home: Read the slide	A1. A4
on 13	unusual cases	G3, G6	of week 13 provided by the teacher Refer	
	11.1 Simultaneous and	,	to knowledge about unusual timing cases	
	mutual exclusion		in embedded systems	
	nrogramming		Lecturer: Review knowledge of embedded	
	11.2 Priority and		operating systems reiterate the embedded	
	inheritance		system knowledge chain Lecture on	
	11 3 Deadlock		unusual cases in operating system timing	
	11 4 Example		instructing students to do programming	
	11.7 Drampie		evercises on handling unusual cases	
			Students in class: Listen to the lasture	
			compare it with the provious tracwladge	
			and ask the teacher questions discuss	
			and ask the teacher questions, discuss	
			Innoviation Answer the questions of 1	
			knowledge. Answer the questions and do	
			the end-of-class exercises.	

			Students study at home: Review the	
			lesson, answer the discussion questions	
			and do the exercise at the end of the week	
Less	Chanter 12 Analyzing	GL G2	Students prepare at home: Read the weekly	A1 A4
1200 on 14	and checking system	G1, G2, G3, G6	slide set provided by the teacher Refer to	111, 117
0111	efficiency		knowledge about analyzing and checking	
	12.1 Ouantify system		system efficiency.	
	performance parameters		Lecturer: Review knowledge of abnormal	
	(worst execution time,		processing in embedded operating system	
	program operating		timing, reiterate the embedded system	
	thresholds)		knowledge chain. Teaching on analyzing	
	12.2 Examples of		and checking system efficiency, instructing	
	quantitative system		students to do system analysis and test	
	analysis		exercises.	
			Students in class: Listen to lecture,	
			compare with previously knowledge and	
			ask teachers questions, discuss issues of	
			Answer the questions and do the end of	
			class evercises	
			Students study at home: Review the	
			lesson, answer the discussion questions	
			and do the exercises at the end of the week	
			week 14 in the notebook.	
Less	Final semester review	<i>G1, G2,</i>	Students prepare in advance: Read slide of	<i>A1, A4</i>
on 15		<i>G3, G4,</i>	week 15 provided by the teacher, review	
		<i>G5</i>	all chapters 7, 8, 9, 10, 11, 12 and lecture	
			slides from week 9 to week 14 and review	
			the Previous exercise.	
			Teachers: Give students a 30-minute test to	
			test students' knowledge. Review the	
			knowledge of chapters 7, 8, 9, 10, 11, 12	
			and repeat the exercises done, paying	
			knowledge that students have not mastered	
			in the test. Answer students' questions	
			Students studying in class: Take tests.	
			monitor and listen to lecturers, record	
			review contents and necessary exercises	
			Students studying at home: Review the	
			knowledge and exercises (in the review	
			exercise file, and the exercises in the slide	
			week 15)	

b. Practice

Table 4.

Lesson	Content [2]	CL	Teaching and learning activities [4]	Evaluatio
(3.75		O [3]		n
hours				

each) [1]				compone nt [5]
Lesson 1	<i>Exercise 1: Instructions</i> <i>for installing LabView and</i> <i>Eclipse software and</i> <i>running the sample</i>	G1, G2, G3, G6	Students prepare at home: Read lesson # 1 in the embedded system practice guide and prepare software to practice as instructed Teachers: Disseminate practice rules, guide students step by step to install the program and instruct students how to perform basic commands in practice, guide how to write reports and submit practice reports Students in class: Install the program, follow the instructions of the instructor, perform practical exercises, write and submit the practice report according to regulations. Students studying at home: Do additional exercises and submit assignments as prescribed	A3
Lesson 2	Exercise 2: Model design on Labview	G1, G2, G3, G6	Students prepare at home: Read lesson # 2 in the embedded system practice guide and learn about using Labview to design embedded system models Lecturer: Teach students how to design models in labview, set parameters, test and collect feedback from the system. Students in class: Listen and follow the instructor's steps, perform practical exercises on system design on Labview, write and submit practice reports according to regulations. Students studying at home: Do additional exercises and submit assignments as prescribed	<i>A</i> 3
Lesson 3	Exercise 3: Reading signal and motor controlling programming	G1, G2, G3, G6	Students prepare at home: Read lesson # 3 in the embedded system practice guide and learn thoroughly C programming in Eclipse to read and handle sensors and motors. Teachers: Guide students to write programs related to reading sensor and motor control. Students in class: Listen and follow the instructor's steps, perform practical exercises on reading sensor, write and submit practice reports according to regulations.	<i>A3</i>

			C 1 4 4 1 1 1 D	
			Students studying at home: Do	
			additional exercises and submit	
			assignments as prescribed	
Lesson	Exercise 4: Applying	<i>G1</i> ,	Students prepare at home: Read lesson	<i>A3</i>
4	Operating system into	<i>G2</i> ,	# 4 in the embedded system practice	
	task synchronization	<i>G3</i> ,	guide and learn more about operating	
		<i>G6</i>	systems and synchronize processing	
			tasks	
			Teachers: Recall operating system	
			principles and instruct students to	
			ambad appreting guatama and control	
			tended operating systems and control	
			Students in class: Listen and follow the	
			instructor's steps, perform practical	
			exercises on the operating system,	
			write and submit practice reports	
			according to regulations.	
			Students studying at home: Do	
			additional exercises and submit	
			assignments as prescribed	
Lesson	Exercise 5: Complete	<i>G1,</i>	Students prepare at home: Read lesson	A3
5	assembly of hardware and	<i>G2</i> ,	# 5 in the embedded system practice	
	software models	<i>G3</i> ,	guide and learn the knowledge to unite	
	sojinal e models	<i>G6</i>	the hardware and software components	
			Teachers: Recall the knowledge of	
			operating system applications in task	
			synchronization Orientation halps	
			students incorporate accurate hardware	
			and software models	
			Stydents in class. Listen and fallow the	
			Students in class: Listen and follow the	
			instructor's steps, perform practical	
			exercises on combining hardware and	
			software models, write and submit	
			practice reports according to	
			regulations.	
			Students studying at home: Do	
			additional exercises and submit	
			assignments as prescribed	
Lesson	Exercise 6: Analyze and	<i>G1</i> ,	Students prepare at home: Read lesson	<i>A3</i>
6	evaluate the effectiveness	<i>G2</i> ,	# 6 in the embedded system practice	
	of the complete system	<i>G3</i> ,	guide	
	- • • •	<i>G6</i>	Teachers: Recall knowledge of system	
			analysis and evaluation, orientation to	
			help students fully implement system	
			analysis and evaluation.	
			Students in class: I isten and follow the	
			instructor's steps perform practical	
			everyises on analyzing and evaluating	
			writing and submitting practice reports	
			writing and submitting practice reports	
			according to regulations.	1

Students studying at home: Do additional exercises and submit
assignments as prescribed

[1]: Thông tin về tuần/buổi học. [2]: Nội dung giảng dạy trong buổi học. [3]: Liệt kê các CĐRMH. [4]: Mô tả hoạt động dạy và học (ở lớp, ở nhà). [5]: Thành phần đánh giá liên quan đến nội dung buổi học, thành phần đánh giá phải nằm trong danh sách các thành phần đánh giá ở Bảng 5, Mục 6.

6. COURSE ASSESSMENT

Table 5.

Evaluation component [1]	CLO [2]	Rate (%) [3]
A1. Learning Process (Test on class, assignments)	<i>G1, G2, G3, G6</i>	15%
A2. Mid-term Semester	G1, G2, G3, G4, G5, G6	15%
A3. Practice	G1, G2, G3, G6	20%
A4. Final Semester Test	G1, G2, G3, G4, G5, G6	50%

[1]: Evaluation components of the subject. [2]: List the corresponding course learning outcome evaluated by the evaluation component. [3]: Scores of assessments on the total subject score.

Rubric of each component evaluated in Table 5

Examination in class	Excellence (8- 10đ)	Good (6-7đ)	Average(5đ)	Weak(3-4đ)	Bad(0-3đ)
Ask for old lessons, new lessons and do class work (test self-studying ability of college students in G2)	<i>Volunteer to answer exercise 4 - 5 times</i>	Volunteer to answer or board the exercise 3 times	Volunteer to answer or go to the board to do the exercise 2 times	Volunteer to answer or board the exercise 1 time	Volunteer to answer or board the exercise 0 times
Attendance is completed	Attend full attendance at 100% attendance sessions	Attend school 75 % attendance sessions	Attend 50% of attendance sessions	Attend 25% of attendance sessions	Not going to school
15-minute test	Excellence (8- 10đ)	Good (6-7đ)	Average(5đ)	Weak(3-4đ)	Bad(0-3đ)
Test No. 1 on synchronous and asynchronous embedded system design models (Check knowledge of Embedded System in CLO G1, G2, G6)	Fully present and solve exercises on synchronous and asynchronous embedded system design models	Present properly and solve part of the exercises on synchronous and asynchronous embedded system design models	Correct presentation of synchronous and asynchronous embedded system design models	Present the principle of synchronous and asynchronous embedded system design models	Wrongly presented and failed to solve the exercises of synchronous and asynchronous embedded system design models
Test No. 2 on embedded system design models over time or mixed (Check knowledge of operating system in CLO G1, G2, G6)	Fully present and solve exercises on embedded system design models over time or mixed	Present properly and solve part of the exercises on embedded system design models over time or mixed	Correct presentation of embedded system design models over time or mixed	Present the principle of embedded system design models over time or mixed	Misrepresentation and failure to solve exercises for embedded system design models over time or mixed

a. Rubric of A1 rating components

b. Rubric of A2 rating component

Quiz section	Excellence (8- 10đ)	Good (6-7đ)	Average(5đ)	Weak(3-4đ)	Bad(0-3đ)
Embedded system design definitions, concepts and principles	Correctly identify 80 to 100% of definitions, concepts and general knowledge related to embedded systems	Identify exactly 60 to 80% of the definitions, concepts and knowledge related to the embedded system	Correctly identify 50 to 60% of the definitions, concepts and knowledge related to the embedded system	Correctly identify 30 to 50% of the definitions, concepts and knowledge related to the embedded system	Correctly identify under 30% of definitions, concepts and knowledge related to the overview of embedded systems
Models in embedded system design	Correctly identify 80 to 100% of definitions, concepts and knowledge related to models in embedded system design	Identify exactly 60 to 80% of definitions, concepts and knowledge related to models in embedded system design	Identify exactly 50 to 60% of definitions, concepts and knowledge related to models in embedded system design	Identify exactly 30 to 50% of definitions, concepts and knowledge related to models in embedded system design	Identify below 30% of definitions, concepts and knowledge related to models in embedded system design
Knowledge of using sensors, solving problems when using sensors	Correctly identify 80 to 100% of definitions, concepts and knowledge related to the use of sensors, solve problems when using sensors	Identify exactly 60 to 80% of definitions, concepts and knowledge related to the use of sensors, solve problems when using sensors	Correctly identify 50 to 60% of definitions, concepts and knowledge related to the use of sensors, solve problems using sensors	Correctly identify 30 to 50% of definitions, concepts and knowledge related to the use of sensors, solve problems using sensors	Identify below 30% of definitions, concepts and knowledge related to the use of sensors, solve problems when using sensors
Concepts, principles of memory usage in embedded systems	Correctly identify 80 to 100% of definitions, concepts and knowledge related to memory usage in embedded systems	Correctly identify 60 to 80% of definitions, concepts and knowledge related to memory usage in embedded systems	Correctly identify 50 to 60% of definitions, concepts and knowledge related to memory usage in embedded systems	Correctly identify 30 to 50% of definitions, concepts and knowledge related to memory usage in embedded systems	Identify well below 30% of definitions, concepts and knowledge related to memory usage in embedded systems
The essay section	Excellence (8- 10đ)	Good (6-7đ)	Average(5đ)	Weak(3-4đ)	Bad(0-3đ)

The synchronous and asynchronous design model, time and mixed design model	Present properly and fully the synchronous and asynchronous design model, time and mixed model and correctly draw state machine models	Present properly and fully the synchronous and asynchronous design model, time and mixed model	Correctly present the synchronous and asynchronous design model, time and mixed model	Presenting the model of synchronous and asynchronous, time and mixed design but having errors in drawing state machine models	Misrepresentation of synchronous and asynchronous design models, time and mixed
Use C language in embedded system memory management	Properly and fully present the use of C language in embedded system memory management and correct the problems with C	The correct and complete presentation of using C language in embedded system memory management	Correct presentation of the use of C language in embedded system memory management	Presenting the correct principle of using C language in embedded system memory management, but having errors in properly addressing problems with C	Wrong presentation of the use of C language in embedded system memory management

c. Rubric of A3 evaluation components

Report the exercises	Excellence (8-10đ)	Good (6-7đ)	Average(5đ)	Weak(3-4đ)	Bad(0- 3đ)
Report to install and use Labview and Eclipse .	Fully complete orders and carry out a full range of all files carried h publication only	Complete all the commands and perform 4/7 practical exercises	Complete the orders and execute 2/7 practical exercises	Complete orders or perform 3/7 practical exercises	Do not complete the comm ands and do not complete the exercises
Report de sign of programs in Labview	Complete the examples and fully implement practical exercises	Complete the examples and implement 3/4 practical exercises	Complete the examples and perform 2/4 practical exercises	Complete the ex amples or perform 2/4 practical exercises	Do not complete the examples and do not complete the exercises
Practical report on program ming sensor reading and motor controllin g	Complete the examples and fully implement practical exercises	Complete all ex amples and perform 4/6 practical exercises	Complete the examples and perform 2/6 practical exercises	Complete the examples or perform 3/6 practical exercises	Do not complete the exam ples and do not complete the exercises
Report applying operating system on multitask program ming	Complete the examples and fully implement practical exercises	Complete the examples and implement 3/4 practical exercises	Complete the examples and perform 2/4 practical exercises	Complete full e nough examples or make 2/4 of practical exercises	Do not complete the examples and do not complete the exercises

Report of a complete assembly exercise of hardware and software models	Complete the examples and fully implement the practical exercises	Complete the examples and perform 4/6 practical exercises	Complete the examples and perform 2/6 practical exercises	Complete the examples or perform 3/6 practical exercises	No complete examples and not complete c evil b anyone practicin g
Report on practice of system design analysis	Complete the examples and fully implement practical exercises	Complete the examples and implement 3/4 practical exercises	Complete the examples and perform 2/4 practical ex ercises	Complete the examples or perform 2/4 practical exercises	Do not complete the examples and do not complete the exercises

d. Rubric of A4 evaluation components

Quiz section	Excellence (8-10đ)	Good (6-7đ)	Average(5đ)	Weak(3-4đ)	Bad(0-3đ)
The definition, concepts, solutions of the input/output system in embedded systems	Correctly identify 80 to 100% of the definitions, concepts, solutions of the input/output system in embedded systems	Identify exactly 60 to 80% of the definitions, concepts, solutions of the input/output system in embedded systems	Correctly identify 50 to 60% of the input/output system definition, concepts, solutions in embedded systems	Identify exactly 30 to 50% of the definitions, concepts, solutions of the input/output system in embedded systems	Correctly identify less than 30% of definitions, concepts, solutions of input/output systems in embedded systems
Multitasking problems, usage principles, multitasking programming	Correctly identify 80 to 100% of multitasking issues, usage principles, multitasking programmin g	Correctly identify 60 to 80% of multitasking issues, usage principles, multitasking programming	Correctly identify 50 to 60% of multitasking issues, usage principles, multitasking programming	Correctly identify 30 to 50% of multitasking issues, usage principles, multitasking programming	Correctly identify less than 30% of multitasking issues, usage principles, multitasking programmin g
Concepts, principles, methods using embedded operating systems	Correctly identify 80 to 100% of embedded operating system definitions, principles, and methods	Correctly identify 60 to 80% of embedded operating system definitions, principles, and methods	Correctly identify 50 to 60% of embedded operating system definitions, principles, and methods	Correctly identify 30 to 50% of embedded operating system definitions, principles, and methods	Correctly identify less than 30% of embedded operating system definitions, principles, and methods
Defining virtual memory, analysis techniques to evaluate system efficiency	Correctly identify 80 to 100% of virtual memory definitions, analysis techniques to evaluate system performance	Correctly identify 60 to 80% of virtual memory definitions, analysis techniques to evaluate system performance	Correctly identify 50 to 60% of virtual memory definitions, analysis techniques to evaluate system performance	Correctly identify 30 to 50% of virtual memory definitions, analysis techniques to evaluate system performance	Identify below 30% of virtual memory definitions, analysis techniques to evaluate system performanc e
The essay section	Excellence (8-10đ)	Good (6-7đ)	Average(5đ)	Weak(3-4đ)	Bad(0-3đ)

Algorithm for multitask programming with POSIX and application into the operating system	Proper and complete presentation of using POSIX multitasking programmin g and applications into the operating system	Present 60 to 70% of the correct use of POSIX multitasking programming and applications into the operating system	Present exactly 50 to 60% of using POSIX multitasking programming and applications into the operating system	Present exactly 30 to 50% of using POSIX multitasking programming and applications to the operating system	Presented below 30% correctly for using POSIX multitasking programmin g and applications into the operating system
Quantitative and quantitative analysis of system efficiency	Proper and complete presentation of algorithms to evaluate and evaluate the effectiveness of the system	Present 60 to 70% of the algorithms to evaluate and evaluate the effectiveness of the system	Present exactly 50 to 60% of algorithms to evaluate and evaluate the effectiveness of the system	Present exactly 40 to 50% of the algorithms to evaluate and evaluate the effectiveness of the system	Present properly below 30% of the algorithm of quantitative analysis and evaluation of the effectiveness of the system

7. COURSE REQUIREMENTS AND EXPECTATIONS

(State other courses regulation, if any, example: students who do not submit assignments or report on will be consider as not submitting; Students who miss practice 2 session will not be allowed to take a final exam, ...)

- Attendance: according to school regulations.
- Theory class:
 - Students need to print lecture slides and read in advance at home before class.
 - In the class, student aren't allowed to make noise, or sleep-in class, attentive listening and full notes.
 - Proactively answer questions from teachers and volunteer on the worksheet, ask when having questions.
 - Review the lesson at home after each lesson, if student still don't understand what knowledge content you can send an email to ask or ask in the next lesson.
- Practical class:
 - Students must not miss more than 3 lesson in the total number of practice exercise. There will be 0 points for practice.
 - Students who miss any practical lesson without first obtaining permission for acceptable reason will receive a zero for that practice session.
 - Read the instruction manual before each practice session. Pay attention to the instructor for practice. Ask questions when you have questions.

- Focus on doing practice, not surfing the web, reading Facebook, playing games, chatting on the Internet ... However, you can discuss with each other in class about the exercise you are doing.
- When submitting the exercise, students should note that each copy of each copy will get a score of 0.
- Theoretical test: do not cheat, ask other students when taking the exam. If the supervisor finds out, the answer sheet will be marked and depending on the extent of the violation the score may be deducted or given a score of 0 for the test.

8. LEARNING MATERIAL, REFERENCE

(The number of textbooks does not exceed 3 documents, the number of reference documents does not exceed 10 documents, in the process of teaching, lecturers can provide additional reference material other than this category.)

Curriculum

1. Vu Duc Lung, Tran Ngoc Duc (2014). *Embedded System syllabus*. Place of publication: HO CHI MINH CITY NATIONAL UNIVERSITY.

References

1. Edward Lee, Sanjit Seshia , Gagne. Introduction to Embedded System A

Cyber-Physical System Approach, 2nd edition, MIT Press, 2017

2. Jeff C. Jensen, Edward A. Lee, and Sanjit A. Seshia, <u>An Introductory Lab print</u> <u>Embedded and Cyber-Physical Systems</u>, http://LeeSeshia.org/lab, First Edition v1.70, 2015.

9. SOFTWARE OR TOOLS SUPPORTING PRACTICE

- 1. Eclipse.
- 2. Labview

Tp.HCM, ngày 29 tháng 04 năm 2019

Head of department / subject

(Sign and write full name)

Lecturer (Sign and write full

name)