

ĐẠI HỌC QUỐC GIA TP. HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN

SUBJECT SYLLABUS < CE222 – DIGITAL INTEGRATED CIRCUIT DESIGN>

1. GENERAL INFORMATION

Course name (English):	Digital Integrated Circuit Design			
Course code:	CE222			
Level:	General course \Box ; Basic IT course \Box ;			
	Junior CE core course \Box ; Senior CE core course \Box ; Graduating course \Box			
Faculty/Department:	Computer Engineering/Integrated Circuits and Hardware Design			
Instructor:	Dr. Lâm Đức Khải			
Credits:	4			
Lecture:	3			
Laboratory:	1			
Self-Study:	6			
Pre-requisite:	Introduction to Digital Circuits, Digital Logic Design			

2. COURSE DESCRIPTIONS

The course introduces to students:

- Fundamental knowledge of digital integrated circuits design.
- Methodologies to analyze, design, simulation and layout the basic digital circuits at CMOS level.
- Design schematics, do simulation, do layout and verify the integrated circuits of combinational circuits and sequential circuits.

3. COURSE GOALS

After taking the course, students are able to:

- Understand the fundamental knowledge of digital integrated circuits design.
- Be able to analyze, design, simulation and layout the basic and advanced digital circuits at CMOS level, such as combinational circuits and sequential circuits.
- Be able to use EDA tools to analyze, design, simulation and layout the digital integrated circuits.

Table 1.

Index	Course Goals[1]	Program Outcomes[2]
G1	Be able to analyze digital integrated circuits	3.1
G2	Be able to be "long-life" learning	5.2
G3	Develop the professional ethics	6.1
G4	Be able to read the English reference material	9.2
G5	Be able to design digital integrated circuits	10.2

4. COURSE LEARNING OUTCOMES - LO

Table 2.

Learning outcomes (LO)	Course learning outcome descriptions [2]	Program Outcomes[2]
G1 (3.1.2)	Be able to analyze function, performance of digital integrated circuits	Т
G2 (5.2)	Be able to self-study by search, read and understand related material.	I, U
G3 (6.1.2)	Be able to develop the professional ethics	Т
G4 (9.2.2)	Be able to read and explain English reference books	U
G5 (10.2.2)	Be able to design digital integrated circuits	T, U

5. C

OURSE CONTENT AND LECTURE PLAN

a. LECTURES

Table 3.

Lecture (3 lecture- hours) [1]	Contents [2]	LO [3]	Teaching and Learning Activities [4]	Assessme nt schemes [5]
Lecture 1, 2	Churong 1: Introduction 1.1 Semiconductor	G2, G4	Instructor: - Introduce about the course	

[Mẫu ĐCMH-2015-1]

	· ·		11 1	
	evolution		syllabus	A1, A2
	1.2 Integrated Circuit		- Introduce about	
	(IC)		fundamental of digital	
	1.3 Problems in IC		integrated circuits and their	
	design		applications	
			- Discussion with students	
			about problems needed to b	
			deal with during IC design.	
			Student:	
			- Try to understand the	
			goals of this course	
			- Note the main points of	
			lecture 1 and 2.	
			- Thinking, asking,	
			answering and discussing	
			with instructor.	
			- Solve the problems and	
		~ ~ .	homeworks of chapter 1	
	Chapter 2: CMOS Logic	G2, G4	Instructor:	
	and Layout		- Check the problems and	
	2.1 A Brief History		homeworks of chapter 1	A1, A2
	2.2 CMOS Gate Design		that are solved by students,	
	2.3 Pass Transistors		then review knowledge of	
	2.4 CMOS Latchs and		chapter 1 by asking several	
	Flip-Flops		questions to students.	
	2.5 Standard Cells		- Present how to design	
	Layouts		circuits and layouts the	
	Layouts		basic logic gates using	
	2.6 Stick Diagrams		CMOS technologies.	
			- Present how to stick	
			diagram of layout	
			- Raise several questions	
Lecture 3, 4			about draw schematics and	
,			layout, stick diagram of	
			several logic gates for	
			students to discuss	
			Students:	
			- Read lecture note and	
			reference books of chapter	
			2 before class.	
			- Note the main points of	
			lecture 3, 4	
			- Thinking, asking,	
			answering and discussing	
			with instructor.	
			- Solve the problems and	
		<u> </u>	homeworks of chapter 2	
Lecture 5, 6	Chương 3: Ideal MOS	G2, G4	Instructor:	
Lecture 5, 0	Transistor Theory		- Check the problems and	

	3.1 Introduction		homeworks of chapter 2	
	3.2 MOS Capacitance		that are solved by students,	
	3.3 nMOS I-V		then review knowledge of	A1, A2
	Characteristics		chapter 2 by asking several	
	3.4 pMOS		questions to students.	
	Characteristics		- Explain the operations of	
			nMOS and pMOS in the	
	3.5 Gate and Diffusion		ideal conditions	
	Capacitances		- Show how to derive the I-	
			V characteristics of nMOS	
			and pMOS.	
			- Present the effects of Gate	
			and Diffusion capacitances	
			on I-V characteristics.	
			- Raise several questions	
			about relations between I-V	
			characteristics for students	
			to discuss	
			Students:	
			- Read lecture note and	
			reference books of chapter	
			3 before class.	
			- Note the main points of	
			lecture 5, 6	
			- Thinking, asking,	
			answering and discussing	
			with instructor.	
			- Solve the problems and	
			homeworks of chapter 3	
	Chapter 4: Non-Ideal	G2, G4	Instructor:	
	MOS Transistor Theory		- Check the problems and	
	4.1 Introduction		homeworks of chapter 3	
	4.2 Electric Field Effect		that are solved by students,	
			then review knowledge of	
	4.3 Channel Length		chapter 3 by asking several	A1, A4
	Modulation		questions to students.	
	4.4 Threshold Voltage		- Explain the operations of	
	Effects		nMOS and pMOS in the	
Lecture 7, 8	4.5 Leakage		non-ideal conditions.	
Lecture 7, 0			- Show the effects of	
			electric field, channel	
			length modulation,	
			threshold voltage and	
			leakage to the I-V	
			characteristics of nMOS	
			and pMOS.	
			- Raise several questions	
			about effects of electric	
			field, channel length	

			 modulation, threshold voltage and leakage on MOS for students to discuss Students: Read lecture note and reference books of chapter 4 before class. Note the main points of lecture 7, 8 Thinking, asking, answering and discussing with instructor. Solve the problems and 	
Lecture 9, 10	Chapter 5: DC and Transient Response 5.1 Pass Transistor 5.2 DC Response 5.3 Noise Margin 5.4 Transient Response 5.5 RC Delay Model 5.6 Delay Estimation	G1, G5	homeworks of chapter 4 Instructor: - Check the problems and homeworks of chapter 4 that are solved by students, then review knowledge of chapter 4 by asking several questions to students. - Explain the purpose of DC and Transient analysises in IC design. - Present the meaning of Noise Margin and how to calculate it - Present how to estimate the delay in IC circuit using RC model - Raise several examples on how to estimate delay of several circuits for students to discuss Students: - Read lecture note and reference books of chapter 5 before class. - Note the main points of lecture 9, 10 - Thinking, asking, answering and discussing with instructor. - Solve the problems and homeworks of chapter 5	A1, A4
Lecture 11, 12	Chương 6: Logical Effort 6.1 RC Delay Estimation 6.2 Logical Effort 6.3 Delay in a Logic Gate	G1, G5	Instructor: - Check the problems and homeworks of chapter 5 that are solved by students,	A1, A4

	6.4 Delay in Multistage Logic Networks 6.5 Choosing the Best Number of Stages 6.6 Example		then review knowledge of chapter 5 by asking several questions to students. - Present another method to estimate delay in IC design using logical effort . - Show on how to choose the best number of stages and the gate sizes of each stages for minimum delay. - Raise several examples on how to estimate delay in IC design using logical effort and choose the best number of stages and the gate sizes of each stages for students to discuss. Students: - Read lecture note and reference books of chapter	
			 6 before class. Note the main points of lecture 11, 12 Thinking, asking, answering and discussing with instructor. Solve the problems and homeworks of chapter 6 	
Lecture 13, 14	Chapter 7: Power 7.1 Introduction 7.2 Power Consumption 7.3 Dynamic Power 7.4 Static Power	G1, G5	Instructor: - Check the problems and homeworks of chapter 6 that are solved by students, then review knowledge of chapter 6 by asking several questions to students. - Present about the sources of power consumption in IC circuits. - Show the methods to minimize the power consumption in IC design - Raise several questions about power consumption and how to minimize it in IC design for students to discuss. Students: - Read lecture note and reference books of chapter	A1, A4

	1			ı
			7 before class.	
			- Note the main points of	
			lecture 13, 14	
			- Thinking, asking,	
			answering and discussing	
			with instructor.	
			- Solve the problems and	
			homeworks of chapter 7	
	Chương 8: Circuit	G1, G5	Instructor:	
	Simulation SPICE	01, 00	- Check the problems and	
			homeworks of chapter 7	
	8.1 Introduction		that are solved by students,	
	8.2 DC Analysis in			A1, A4
	SPICE		then review knowledge of	A1, A4
	8.3 Transient Analysis in		chapter 7 by asking several	
	SPICE		questions to students.	
	8.4 Spice Netlist		- Instruct how to use SPICE	
	8.5 Current, Voltage,		to simulate, measure the	
	Delay and Power		functions, timing delay and	
	Measurements		power consumption of IC	
			designs in DC or Transient	
			analysises.	
			- Raise several questions	
			about use SPICE to	
Lecture 15			simulate, measure the	
			functions, timing delay and	
			power consumption of IC	
			designs for students to	
			discuss	
			Students:	
			- Read lecture note and	
			reference books of chapter	
			8 before class.	
			- Note the main points of	
			lecture 15	
			- Thinking, asking,	
			answering and discussing	
			with instructor.	
			- Solve the problems and	
			homeworks of chapter 8	

b. LABORATORY

Table	24.			
Lab (5 lab- hours)	Contents [2]	LO [3]	Teaching and Learning Activities [4]	Assessme nt schemes [5]
Lab 1	Lab 1: Using Synopsys-Custom	G1, G3, G5	Instructor: - Instruct how to read the lab guide	A3

	Design to design IC circuits		 Instruct how to use Synopsys-Custom Design to design IC circuits. Answer any questions from students Students: Follow a step by step on the lab guide to design circuit, simulation and layout for simple IC circuit using Synopsys-Custom Design tool Verify the results on waveform of SPICE simulation Do the draft report about what students done. Finish the report of Lab 1 at home 	
Lab 2	Lab 2: IC Design, Simulation, Layout for the combinational circuit: Adder	G1, G3, G5	Instructor: - Instruct how to design, simplify the Adder circuit using CMOS technology. - Answer any questions from students Students: - Derive the Adder logic expressions, then design circuit, pre-layout simulation and layout, extract RC, post-layout simulation for Adder circuit. - Verify the results on waveform of SPICE simulation - Do the draft report about what students done. - Finish the report of Lab 2 at home	A3
Lab 3	Lab 3: IC Design, Simulation, Layout for the sequential circuit: D- flipflop	G1, G3, G5	Instructor: - Instruct how to design, simplify the D-flipflop circuit using CMOS technology. - Answer any questions from students Students:	A3

[Mẫu ĐCMH-2015-1]

			 Derive the D-flipflop logic expressions, then design circuit, pre-layout simulation and layout, extract RC, post-layout simulation for D-flipflop circuit. Verify the results on waveform of SPICE simulation Do the draft report about what students done. Finish the report of Lab 3 	
			at home	
Lab 4	Lab 4: IC Design, Simulation, Layout for the complex circuit: ALU- 4bit	G1, G3, G5	Instructor: - Instruct how to design, simplify the ALU-4bit circuit using CMOS technology. - Answer any questions from students Students: - Derive the ALU-4bit logic expressions, then design circuit, pre-layout simulation and layout, extract RC, post-layout simulation for ALU-4bit circuit. - Verify the results on waveform of SPICE simulation - Do the draft report about what students done. - Finish the report of Lab 4 at home	A3
Lab 5	Lab 5: IC Design, Simulation, Layout for the compex circuit: Datapath of simple processor	G1, G3, G5	Instructor: - Instruct how to design, simplify the datapath of simple processor circuit using CMOS technology. - Answer any questions from students Students: - Derive the datapath of simple processor logic expressions, then design circuit, pre-layout simulation and layout,	A3

			extract RC, post-layout simulation for datapath of simple processorcircuit. - Verify the results on waveform of SPICE simulation - Do the draft report about what students done. - Finish the report of Lab 5 at home	
Lab 6	Lab 6: IC Design, Simulation, Layout for the compex circuit: Simple processor	G1, G3, G5	Instructor: - Instruct how to design a controller of simple processor circuit using CMOS technology. - Instruct how to connect the datapath and controller circuits to build a simple processor. - Answer any questions from students Students: - Derive the controller of simple processor logic expressions, then design circuit, pre-layout simulation and layout, extract RC, post-layout simulation for datapath of simple processor circuit. - Connect the datapath and controller circuits and layout to build a simple processor - Verify the results on waveform of SPICE simulation. - Do the draft report about what students done. - Finish the report of Lab 6 at home.	A3

6. COURSE ASSESSMENT

Table 5. Assessment schemes

Assessment schemes [1]	LO [2]	Percentage (%) [3]
A1. Attendance,	<i>G2, G3</i>	15%

Quizes, Homeworks		
A2. Mid-term exam	<i>G2, G4</i>	15%
A3. Laboratory	<i>G1, G3, G5</i>	20%
A4. Final-term	<i>G1, G5</i>	50%
exam		

Table 6: Rubric assessment for A1-A4 schemes

Assessment		Points			
schemes	Chapter	0-3	4-5	6-8	9-10
A1, A2, A3	Chapter 1	Understand	Understand	Understand the	Be able to
		structure and	structure and	fabrication	design
		operations of	operations of	procedure for	schematic and
		PN junction	NMOS/ PMOS	NMOS/ PMOS	layout for basic
			gates		gates
A1, A2, A3	Chapter 2	Be able to	Be able to	Be able to	Understand
		design	design	design	clearly about
		schematic and	schematic and	schematic and	race conditions
		layout for	layout for	layout, stick	in IC designs
		simple logic	specific logic	diagram for	Be able to
		expressions at	gates at CMOS	sequential logic	estimate the area
		CMOS level	level, such as	gates at CMOS	of layout design
			transmission	level, such as	
			gate, tristate,	D-latch, D-	
			mux	Flipflop	
A1, A2	Chapter 3	Understand on	Be able to	Be able to	Understand the
		how to form	explain 3	derive the I-V	capacitances
		the operation	operation	expressions of	formed during
		modes of	modes of	*	operations of
		MOS	NMOS/ PMOS	modes for	NMOS/PMOS
		capacitors		NMOS/PMOS.	
A1, A4	Chapter 4	Understand	Understand the	Understand the	Understand the
		the effects of			effects of
		electric field	channel length		leakage current
		on operations	modulation on	voltage on	on operations of
		of NMOS/	operations of	operations of	NMOS/ PMOS
		PMOS	NMOS/ PMOS	NMOS/ PMOS	Understand the
					effects of
					technology and
					environment on
					operations of
	~1 -				NMOS/ PMOS
A1, A4, A3	Chapter 5	Be able to	Be able to do	Be able to	Be able to
		explain about	DC and	explain the	model the
		DC and	Transient	phenomenons	CMOS circuits
		Transient	analysis for	cause the	using Elmore
		analysis and	basic CMOS	propagration	delay model

		their purposes in IC design	gates Understand the meaning of Noise Margin	delays in IC design by using mathematic equations Be able to model the CMOS gates	Be able to improve layout to minimize propagation delay causes by RC.
A1, A4	Chapter 6	Understand the meaning of effort delay, logical delay, electrical effort and parasitic delay	Be able to calculate the effort delay, logical delay, electrical effort and parasitic delay of basic CMOS gates	using Elmore delay model. Understand the meaning of path logical effort, path electrical effort, path effort and branching effort Be able to calculate the path logical effort, path	Be able to optimize the number of stages and the device sizes of gates in CMOS circuits to minizie the propagation delay.
A1, A4	Chapter 7	Understand the meaning of power consumption, dynamic and static power consumptions	Understand the sources of dynamic and static power consumptions in IC design		Be able to reduce the dynamic and static power consumptions in IC design
A1, A4, A3	Chapter 8	in IC design Understand the reasons of need SPICE for simulation and verification of IC design	Be able to use SPICE to do DC and Transient analysises for CMOS circuits design	optimize the CMOS gates in IC design by	Be able to find the logical effort for CMOS gates in IC design by using SPICE

7. COURSE REQUIREMENTS

- Lecture class:

+ Attendance: not allow to absent more than 3 lectures, not allow to be late more than 15 minutes.

+ Always take the lecture note, book and notebook

- + Read lecture notes, do the homeworks before classes
- Laboratory:
 - + Attendance: not allow to absent more than 2 labs, not allow to be late more than 15 minutes.
 - + Follow the Lab guide to prepare the Lab content before each Lab class

8. BOOK AND REFERENCE BOOKS

Book:

1. Thiết kế vi mạch số, Nguyễn Minh Sơn, Nguyễn Trần Sơn, Đại học quốc gia Tp.HCM, Trường đại học Công nghệ thông tin, 1st Edition, 2016.

Reference books:

- 1. *CMOS VLSI Design*, Neil H.E. Weste, D. Harris, Pearson Education, Inc. Publishing as Pearson Addison-Wesley, 4th Edition, 2011.
- Digital Integrated Circuit A Design Perspective, J.Rabaey, A.Chandrakasan B.Nikolic, 2th Edition, 2002.

9. LAB TOOLS

- 1. T-SPICE for Simulation
- 2. CADENCE/SYNOPSYS Student Edition for Design

Date: August-05, 2018 Instructor

Dean/Head of Department

Nguyễn Minh Sơn

Lâm Đức Khải